Visual Saliency Prediction and Evaluation across Different Perceptual Tasks

نویسندگان

  • Shafin Rahman
  • Neil Bruce
  • Zoi Kapoula
چکیده

Saliency maps produced by different algorithms are often evaluated by comparing output to fixated image locations appearing in human eye tracking data. There are challenges in evaluation based on fixation data due to bias in the data. Properties of eye movement patterns that are independent of image content may limit the validity of evaluation results, including spatial bias in fixation data. To address this problem, we present modeling and evaluation results for data derived from different perceptual tasks related to the concept of saliency. We also present a novel approach to benchmarking to deal with some of the challenges posed by spatial bias. The results presented establish the value of alternatives to fixation data to drive improvement and development of models. We also demonstrate an approach to approximate the output of alternative perceptual tasks based on computational saliency and/or eye gaze data. As a whole, this work presents novel benchmarking results and methods, establishes a new performance baseline for perceptual tasks that provide an alternative window into visual saliency, and demonstrates the capacity for saliency to serve in approximating human behaviour for one visual task given data from another.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

Perceptual Learning of Pop-out and the Primary Visual Cortex

I propose that perceptual learning of tasks to detect targets among uniform background items involves changing intra-cortical interactions in the primary visual cortex (V1). This is the case for tasks that rely mainly on bottom-up saliency to guide attention to the task relevant locations quickly, and rely less on top-down knowledge of the stimuli or on other strategies. In particular, suppress...

متن کامل

Personalized Saliency and its Prediction

Almost all existing visual saliency models focus on predicting a universal saliency map across all observers. Yet psychology studies suggest that visual attention of different observers can vary a lot under some specific circumstances, especially when they view scenes with multiple salient objects. However, few work explores this visual attention difference probably because of lacking a proper ...

متن کامل

Just Noticeable Difference Estimation Using Visual Saliency in Images

Due to some physiological and physical limitations in the brain and the eye, the human visual system (HVS) is unable to perceive some changes in the visual signal whose range is lower than a certain threshold so-called just-noticeable distortion (JND) threshold. Visual attention (VA) provides a mechanism for selection of particular aspects of a visual scene so as to reduce the computational loa...

متن کامل

Gaze distribution analysis and saliency prediction across age groups

Knowledge of the human visual system helps to develop better computational models of visual attention. State-of-the-art models have been developed to mimic the visual attention system of young adults that, however, largely ignore the variations that occur with age. In this paper, we investigated how visual scene processing changes with age and we propose an age-adapted framework that helps to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015